Pulmonary Tuberculosis

Jeffrey P. Kanne, M.D., FACR, FCCP Professor Chief of Thoracic Imaging

1

DEPARTMENT OF RADIOLOGY University of Wisconsin School of Medicine and Public Health

CHESTRAD 2023 A Case Review and Lecture Series Saturday 15° July - Monday 17° July 27 CPD Points

Objectives

- Illustrate CT and radiographic findings
 of tuberculosis
- Describe complications of tuberculosis
- Provide an update on imaging of TB, particularly non-morphologic techniques

Epidemiology

- Majority of cases in Asia
 - -India and China have largest number of cases
- Largest number of active cases per capita
 –Sub-Saharan Africa: HIV epidemic
- U.S. and Western Europe
 - -Foreign born residents
 - -Recent immigrants from endemic regions

Estimated Incidence 2021

Australia

- Australia has one of the lowest rates of TB in the world
 - -5.2 7.0 cases per 100,000 since 1980s,
 - ~90% of cases in people born overseas
 - First Nations (Australian Aboriginal and Torres Strait Islanders)
 3.8-7.5 per 100,000
 - Nonindigenous native born
 <1.0 per 100,000
 - Highest rates in Northern Territory

Meumann EM et al. Lancet Reg Health – West 2021

New Zealand

- New Zealand also has one of the lowest rates of TB in the world
 - -~6.0 per 100,000
 - 300 cases per year
 - 80% in those born outside of New Zealand
 - 50% of cases in NZ born are of Māori ethnicity

6

Imaging

- · CT more sensitive than radiography
 - Miliary nodules with normal radiograph
 - -Mediastinal lymphadenopathy
 - -Subtle cavitation
 - Endobronchial spread
- CT useful for evaluating pleural, mediastinal, and chest wall complications

Primary Infection

- Ghon focus: initial site of infection

 Heals and forms calcified nodule
 May expand to cause consolidation
- Ranke complex:
 - -Ghon focus and
 - -Regional lymphadenitis

Ranke Complex

10

Primary Tuberculosis

- Consolidation
- Occurs in most adults with primary infection
- Expansion of initial Ghon focus

Primary Tuberculosis

Primary Tuberculosis

13

Primary Tuberculosis

Primary Tuberculosis

- Most commonly occurs in children
- Increasing number of cases in adults because of HIV infection

Radiographic Finding	Adults	Children
Lymphadenopathy	10%-30%	95%
Consolidation	90%	70%
Pleural effusion	30%-40%	5%-10%

Post-Primary TB

- Consolidation in approximately 50%
- Posterior and apical segments of upper lobes
- Superior segments of lower lobes

Post-Primary TB

18

Post-Primary TB

Post-Primary TB

- Cavities
- 20%-40% of patients
- 10%-20% contain fluid levels
- Apical and poster segments of upper lobes
- Superior segments of lower lobes

Post-Primary TB

Post-Primary TB

- Pleural disease
- Effusion
- Empyema
- Bronchopleural fistula

22

Post-Primary TB

Post-Primary	TE
--------------	----

Finding	Frequency
Consolidation	55%
Cavitation	20%-45%
(Fluid levels)	(10%-20%)
Small nodules away from	20%-25%
primary focus	
Lymphadenopathy	5%-10%
Pleural effusion	15%-25%
Tuberculoma	5%

25

TB with HIV Co-Infection

CD4+ > 200 cells/mm³

- Reinfection
- Reactivation

CD4+ > 50 cells/mm³ and < 200 cells/mm³

• Primary

CD4+ < 50 cells/mm³

- Atypical manifestations
- Disseminated

26

TB with HIV Co-Infection

CD4+ T-cell count: 150 cells/mm³

Active Tuberculosis?

- Many imaging findings of tuberculosis reflect sequela of infection
- Small centrilobular nodules and tree-inopacities on CT are strong predictors of active infection
- Progression of radiographic abnormalities also strongly favors active infection

Active Tuberculosis?

Sputum stains and cultures – M. tuberculosis

Active Tuberculosis?

Disseminated TB

- Disseminated or "miliary" TB can occur as primary or post-primary infection
- Other findings of post-primary infection may be apparent
- Most immunocompromised

Disseminated TB

- Diffuse tiny lung nodules
- Radiograph may be normal
- Patients typically very ill

Disseminated TB

Disseminated TB

33

Complications – Lungs

- Scar •
- Lung destruction
- Bronchiectasis
- Cavities
- Acute respiratory distress syndrome
- Aspergilloma
- Tracheobronchial stenosis
- Broncholithiasis

Complications - Lung

- · Scar and destruction of lung
- Up to 40% of patients with post-primary TB
- Result of marked fibrotic response

Complications - Lung

- Scar and destruction
 of lung
- Up to 40% of patients with post-primary TB
- Result of marked fibrotic response

Complications - Lung

- Chronic cavity following treatment
- Aspergilloma in up to 11% of patients with TB
- Hemoptysis in over 50%

37

Complications - Lung

- Tuberculoma
- 5% of patients with TB
- 5 mm 40 mm
- Satellite nodules
- Calcification in up to 30%

Complications - Lung

- Tuberculoma
- 5% of patients with TB
- 5 mm 40 mm
- Satellite nodules
- Calcification in up to 30%

Kim HY et al. Radiographics 2001

Complications - Lung

- Bronchiectasis
- 30% 60% of patients with post-primary TB
- Up to 85% of patients on CT
- Favors apical and posterior segments of upper lobes

Complications - Lung

- Tracheobronchial stenosis
 - Compression from lymph nodes
 - Primary airway wall infection
- Left main bronchus most common
- Irregular luminal narrowing

42

Complications - Pleura

- Pleurisy
- Empyema
- Empyema necessitatis
- Fibrothorax
- Pneumothorax
- Bronchopleural fistula

Complications - Pleura

- Empyema
- Bronchopleural fistula

Complications - Pleura

- Empyema necessitatis
- Direct extension of empyema into the chest wall

Complications - Pleura

- Fibrothorax
- Sequela of TB empyema or effusion
- Absence of pleural fluid favors inactivity

46

Complications - Vascular

- Pulmonary and bronchial arteritis
- Thrombosis
- Bronchial artery
 pseudoaneurysm
- Rasmussen aneurysm

Complications - Vascular

- Rasmussen aneurysm
- Pseudoaneurysm of pulmonary artery from tuberculosis
- 5% of patients with chronic cavitary TB (autopsy series)

Complications - Vascular

Complications - Mediastinum

- Esophagomediastinal fistula
- Esophagobronchial fistula
- Constrictive pericarditis
- Mediastinal fibrosis

49

Complications - Mediastinum

- Esophagomediastinal fistula
- Esophagobronchial fistula
- Constrictive pericarditis
- Mediastinal fibrosis

Complications - Mediastinum

- Pericardial TB
- 1% of patients
- Direct extension or disseminated disease
- Constrictive pericarditis in 10% of patients with pericardial TB

Multidrug Resistant TB

- Imaging findings identical to those of nonresistant strains of TB
- Infection is prolonged and more difficult to treat
- Resection may be required for advanced cavitary disease

Multidrug Resistant TB

54

Multidrug Resistant TB

Baseline

Two years later

Collapse Therapy

Update on Imaging

- Chest radiography cornerstone for screening, diagnosis, and follow-up
- Access to CT, MRI, and molecular imaging technology is often limited in tuberculosis endemic areas

58

Magnetic Resonance Imaging

- Access to MRI is a major barrier
- MRI useful for assessing TB involvement of spine, CNS, joints, and soft tissues
- Limited data on utility of MRI for pulmonary tuberculosis

Magnetic Resonance Imaging

- 50 HIV negative patients with active TB and abnormal chest radiographs compared highresolution CT to MRI¹
- No significant difference in identification of location and distribution of lung lesions
- MRI superior in showing parenchymal inhomogeneity, caseous necrosis, and pleural or lymph node involvement

¹Rizzi EB et al. BMC Infectious Diseases 2011, 11:243

Magnetic Resonance Imaging

Magnetic Resonance Imaging

62

61

Nuclear Medicine

- FDG-positron emission tomography (PET) shows areas of increased glycolysis
- Primarily used for oncologic imaging
- Infection and other inflammatory lesions known causes of false positive FDG-PET

Nuclear Medicine

- Pulmonary tuberculosis causes increase in FDG uptake
- Goo et al.¹ 9 of 10 tuberculomas showed increased FGD uptake
- Mean SUV_{max} value was 4.2 (2.2 SD)

¹Goo et al. *Radiology* 2000;216(1):117-121

Nuclear Medicine

- Double phase FDG PET -60 minutes and 120 minutes
- 25 patients with pulmonary tuberculoma
- Statistically significant higher values in active tuberculoma vs. inactive tuberculoma
 - Maximal SUV_{max} early
 - $-SUV_{max}$ delayed
 - Change in SUV_{max}

Kim et al. Radiology 2000;216(1):117-121

Nuclear Medicine

- Tuberculoma indistinguishable from lung carcinoma on FDG PET
- Investigation into utility double phase FDG PET for distinguishing tuberculosis from cancer

 Higher rate of FDG retention in malignant lesions
- Particularly problematic in areas with high prevalence of tuberculosis

66

Nuclear Medicine

- FDG PET may be useful for extrapulmonary tuberculosis
- Guide for biopsy and aspiration for culture
- Surgical planning
- Follow-up

Nuclear Medicine

- FDG PET may be used to monitor effect of therapy
- Tuberculomas can stabilize or grow even when sterile
- Increase in FDG uptake suggests progressive infection
- May guide duration of medical therapy

Nuclear Medicine

FDG-PET/MRI vs. FDG-PET/CT

 10 subjects with pulmonary TB
 PET/MRI identified 108 lesions
 PET/CT identified 112 lesions

Thomas BA et al. Nucl Med Commun. 2017

Nuclear Medicine

Thomas BA et al. Nucl Med Commun. 2017

70

Nuclear Medicine

- ⁶⁷Ga-citrate non-HIV infection
 - High sensitivity
 - Low specificity
- ⁶⁷Ga-citrate HIV infection
 - Retrospective review of 220 HIV-positive patients with fever of unknown origin
 - Positive in 114 patients
 - Mycobacteria isolated in 83 (38%)
 - Positive in 75 (sensitivity 90%)

Sathekge M et al. Nuclear Medicine Communications 2012, 33:581-590

71

Nuclear Medicine

- Other tracers have been investigated
 - ²⁰¹TI
 - ^{99m}Tc-sestamibi
 - 99mTc-tetrofosmin
- Accuracy ≥ 85% negative predictive value ≥ 90% for distinguishing TB from carcinoma

Sathekge M et al. Nuclear Medicine Communications 2012, 33:581–590

ine Ahmadihosseini H et al. Nuclear Medic 590 Communications 2008, 29:690–694

Summary

- Chest radiography still most important imaging test for tuberculosis
- Potential role for PET/CT and other nuclear medicine techniques
- Access to newer imaging techniques very limited in most tuberculosis-endemic regions

74

