Lung Cancer Update

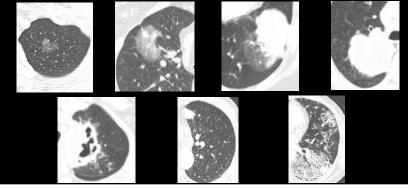
Jeffrey P. Kanne, M.D., FACR, FCCP Professor Chief of Thoracic Imaging

DEPARTMENT OF RADIOLOGY University of Wisconsin School of Medicine and Public Health

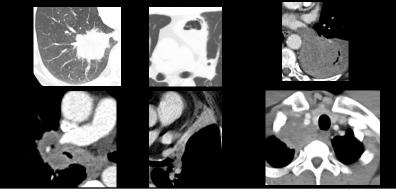
CHESTRAD 2023 A Case Review and Lecture Series Saturday 15th July - Sunday 10th July - Monday 17th July 27 CPD Points

Objectives

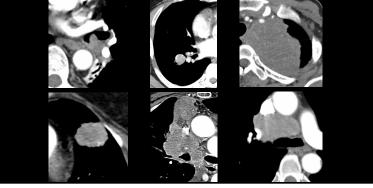
- List common histopathologic types of lung cancer
- Define role of imaging in the TNM8 staging of lung cancer
- Highlight changes from TNM7 and describe shortcomings of TNM8


1

Lung Cancer Types


- Adenocarcinoma
- Squamous cell carcinoma
- Neuroendocrine tumors
 - -Carcinoid tumor
 - Large cell neuroendocrine carcinoma
 - -Small cell carcinoma
- Other rare subtypes

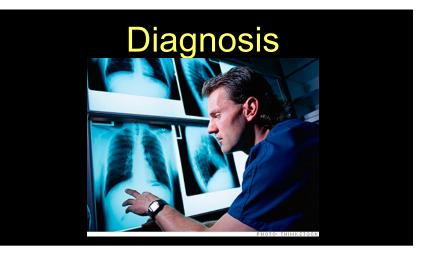
J Thorac Oncol. 2015 Sep;10(9):1243-1260.


Adenocarcinoma

Squamous Cell Carcinoma

Neuroendocrine Tumors

5


Role of Imaging

- Screening
- Diagnosis
- Staging
- Surveillance
- Complications

Imaging Modalities					
Modality	Screening	Diagnosis	Staging	Surveillance	Complications
Radiography		+			+
СТ	+++	+++	+++	+++	+++
MRI		+	++		++
US		+	++		++
PET/CT			+++		

10

Importance of Staging

- Guides treatment
- Assess results of treatment
- Better defines prognosis
- Establishes nomenclature to improve communication and research

Current Staging System

- 8th Edition of TNM staging system (AJCC/UICC)
 - –(T)umor
 - -(N)ode
 - -(M)etastasis
 - -Based on approximately 95,000 patients

Methods for Staging

- History and physical examination
- Laboratory testing
- Imaging
- Tissue sampling

13

Methods for Staging

- Chest CT
 - -Usually establishes likely diagnosis of lung cancer
 - -Depicts local and regional extent of tumor
 - -Suggests alternate diagnosis

14

Methods for Staging

- FDG PET/CT
 - -Guides lymph node sampling
 - -Occult metastases
 - -Avoid unnecessary surgery

Methods for Staging

- Brain MRI
 - -Superior to CT for detecting metastases
 - -Improved outcomes with early detection of brain metastases

Methods for Staging

•Alternatives

- -Abdomen CT and bone scan if PET not available
- -Head CT if MRI not available

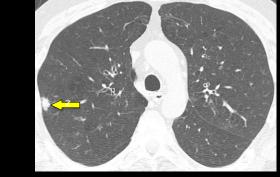
Imaging Modalities

Modality	Т	Ν	М
Radiography	+	+	+
СТ	+++	++	++
MRI	++	++	+++
US	+	++	++
PET/CT	+	++	+++

18

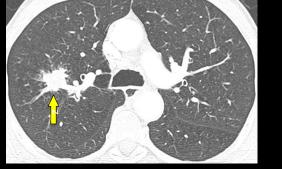
Date of origin: 2005 Last review date: 2013 American College of Radiology ACR Appropriateness Criteria[®] e Clinical Staging of Bro Non-small-cell lung cs Rating Comment RRL* *** uch adrenal cland hrough adrenal glands. See tex re pros and cons to the use of P base is no strong coinstiffe and *** ort the use of IV or **** 0 than 3 cm in size 0 ry be useful as a baseli ۰ *** abdoman with IV c EMPLE *** *** ry if PET has been d *** eful for evaluating chest wall inv rdiac invasion, and for local stagi 0 0 *** **** *** head without and with IV *** Through adrenal glans

T Stage


- Tumor size
- Local invasion
- Endobronchial location
- Presence of separate tumor nodules

T1

- Surrounded by lung or visceral pleura
- Invasion distal to lobar bronchus
- Size
 - ≤1 cm (T1a)
 - >1 cm but ≤2 cm (T1b)
 - ->2 cm but ≤3 cm (T1c)


21

T1b: > 1 but ≤2 cm

22

T1c: >2 cm but ≤3 cm

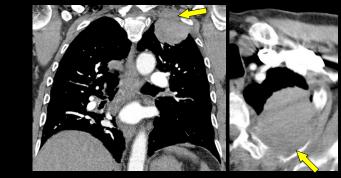
T2

- Local invasion of visceral pleura
- Atelectasis to hilum
- Involves main bronchus but not carina
- Size

24

- ->3 cm and \leq 4 cm (T2a)
- ->4 cm and ≤ 5 cm (T2b)

T2b: >4 cm but ≤5 cm


26

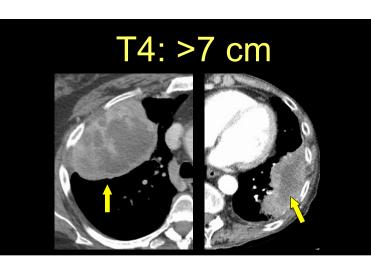
T3

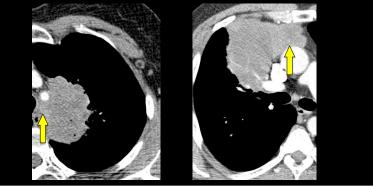
- Local invasion of chest wall, pericardium, or phrenic nerve
- Separate tumor nodule(s) in same lobe
- Size >5 cm but ≤7 cm

T3: Chest Wall Invasion

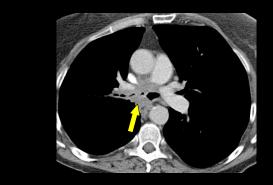
T2: Lobar Obstruction

T3: Phrenic Nerve Invasion

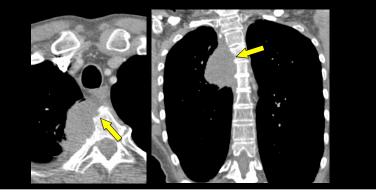

T3: Tumor Nodule Same Lobe



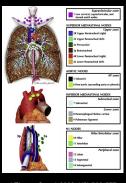
- Mediastinum
- Diaphragm
- Carina or trachea
- Heart or great vessels
- Esophagus
- Recurrent laryngeal nerve
- Vertebral body


- T4
 - Separate tumor nodule(s) in same lung
 - Size >7 cm

T4: Mediastinal Invasion



T4: Carinal Invasion


34

T4: Vertebral Body Invasion

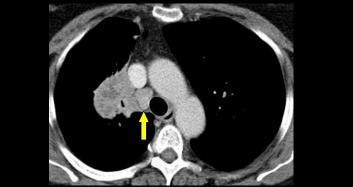
N Stage

- Lymph node station involvement
- Guided by CT and PET findings
- CT: short axis > 10 mm
- PET: FDG avidity

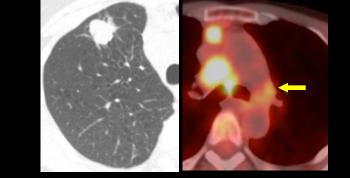
J Thorac Oncol. 2009;4(5):568-577

N Stage

- N1: ipsilateral hilar or intrapulmonary
- N2: ipsilateral mediastinal*
- N3: *contralateral* mediastinal or hilar, *ipsilateral or contralateral* supraclavicular or scalene


*Subcarinal nodes are considered ipsilateral

N1: Ipsilateral Hilar Node

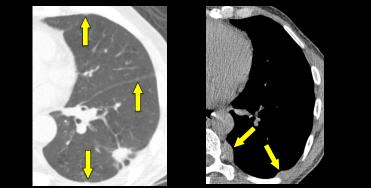

38

40

N2: Ipsilateral Mediastinal Node

N3: Contralateral Mediastinal

N3: Scalene



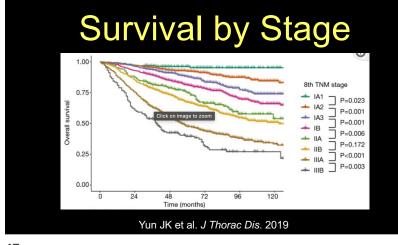
M Stage

- M1a
 - Malignant pleural or pericardial effusion
 - Pleural or pericardial metastases
 - -Metastasis to contralateral lung
- M1b
 - -Single extrathoracic metastasis
- M1c
 - Multiple extrathoracic metastases

42

M1a: Pleural Metastases

M1b: Single Extrathoracic Metastasis

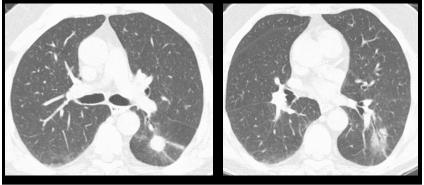


Composite Stage

TABLE 5] Lung Cancer Stage Grouping (Eighth Edition)					
T/M	Label	NO	N1	N2	N3
T1	T1a ≤ <i>l</i>	IA1	IIB	IIIA	IIIB
	T1b >1-2	IA2	IIB	IIIA	IIIB
	T1c >2-3	IA3	IIB	IIIA	IIIB
T2	T2a Cent, Yisc Pl	IB	IIB	IIIA	IIIB
	T2a >3-4		IIB	IIIA	IIIB
	T2b >4-5	IIA	IIB	IIIA	IIIB
T3	T3 >5-7	IIB	IIIA	IIIB	IIIC
	T3 Inv	IIB	IIIA		IIIC
	T3 Satell	IIB	IIIA	IIIB	IIIC
T4	T4 >7	IIIA	IIIA	IIIB	IIIC
	T4 Inv	IIIA	IIIA	IIIB	IIIC
	T4 Ipsi Nod	IIIA	IIIA	IIIB	IIIC
M1	M1a Contr Nod			IVA	IVA
	M1a Pl Dissem			IVA	IVA
	M1b Single			IVA	IVA
	M1c Multi	IVB	IVB	IVB	IVB
Chest 2017;151(1)193-203					

45

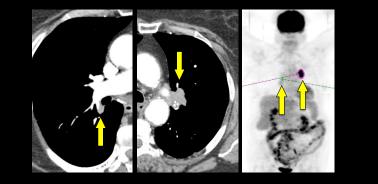
Multiple Primary Lung Cancers


- Incidence 1.5%-2.0% per patient year
- Most same histology
 - -Genetic predisposition
 - -Environmental exposures

Complex Patterns

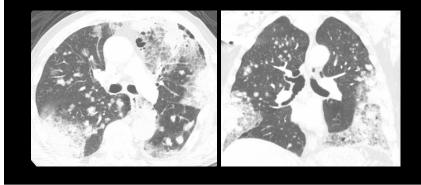
	Second Primary	Multifocal	Pneumonic-Type of Adenocarcinoma	Separate
	Lung Cancer	GG/L Nodules		Tumor Nodule
Imaging	Two or more distinct	Multiple ground glass	Patchy areas of ground	Typical lung cancer
Features	masses with imaging	or part-solid nodules	glass and consolidation	(eg, solid, spiculated)
	characteristic of lung			with separate solid
	cancer (eg, spiculated)			nodule
Pathologic	Different histotype or	Adenocarcinomas with	Same histology	Distinct masses with
Features	different morphology	prominent lepidic	throughout (most often	the same morphology
	by comprehensive	component (typically	invasive mucinous	by comprehensive
	histologic assessment	varying degrees of	adenocarcinoma)	histologic assessment
		AIS, MIA, LPA)		
TNM Classi-	Separate cTNM and	T based on highest T	T based on size or T3 if	Location of separate
fication	pTNM for each cancer	lesion with (#/m)	in single lobe, T4 or	nodule relative to
		indicating multiplicity;	M1a if in different ipsi-	primary site
		single N and M	or contralateral lobes;	determines if T3, T4 or
		-	single N and M	M1a; single N and M
Conceptual	Unrelated tumors	Separate tumors, albeit	Single tumor, diffuse	Single tumor, with
View		with similarities	pulmonary involvement	intrapulmonary
				metastasis

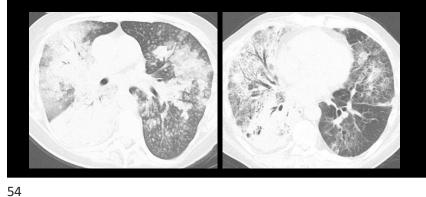
Chest 2017;151(1)193-203


Synchronous Primary

50

49


Synchronous Primary



"Pneumonic Type"

"Pneumonic Type"

Improvements

- TNM6 (2002)
 - -5319 surgically staged patients
 - Primarily from single site
- TNM7 (2009)
 - -68,463 NSCLC patients
 - -46 centers across 20 countries
 - -Staged clinically, primarily from CT
 - -TNM descriptors revised based on survival data

Improvements

- TNM8 (2017)
 - -Prospective database 70,967 NSCLC
 - -Demographic data
 - -Detailed pathologic detail
 - Molecular
 - Genetics
 - Margins
 - $-SUV_{max}$ from FDG PET/CT when available

Shortcomings

- TNM8 (2017)
 -<5% patients had complete data
 - Increase in demographic skew
 - -Shift toward surgical cases

Shortcomings - Geography

Location	TNM 7	TNM 8		
Asia	11.5%	44% (93% Japan)		
North America	21%	5%		
Australia	9.3%	1.7%		
Europe	58%	49% (73% Denmark)		
South America	-	0.3%		
J Thorac Oncology 2014;9(11)1618-1624				

58

Shortcomings - Stage

Treatment	TNM 7	TNM 8		
Surgery +/- chemo +/- radiotherapy	53%	85%		
Chemotherapy	23%	9.3%		
Radiotherapy	11%	1.5%		
Chemotherapy + radiotherapy	12%	4.7%		
L Thorac Oncology 2014:9(11)1618-1624				

Thorac Oncology 2014;9(11)1618-1624

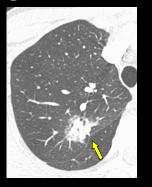
Shortcomings - Imaging

- TNM7 many patients did not undergo FDG PET/CT
- TNM8
 - Many Japanese patients likely did not undergo FDG PET/CT
 - Earlier stage
 - Submitted 1999, 2002, 2004 (limited availability)

Shortcomings - Imaging

- TNM8
 - -FDG PET/CT data not recorded
 - -Value of PET not well represented in current TNM
 - -MRI not included
 - Evolution of TNM often slower than imaging advances

61


Shortcomings - T

- Central airways
 - -T2 vs. T4 (carinal involvement)
 - Ex: T2N0M0 within 1 mm from carina likely not resectable (stage IB or IIA)
- Limited T4 impact of recent advances in surgical technique not addressed
 - -Vertebral involvement
 - Central vascular

62

Shortcomings - T

- Visceral pleural invasion
 - -Pathologic definition not standardized
 - -Problematic on CT and other imaging

Shortcomings - T

- Identifying primary site challenging
 - Multiple nodules or masses
 - Coexistent peripheral and central infiltrating disease

Shortcomings - T

- T and M interdependence
- 15 mm RUL nodule (T1bN0M0)
 - -8-mm tumor nodule same lobe \rightarrow T3N0M0
 - -8-mm tumor nodule same lung \rightarrow T4N0M0
 - -8-mm tumor nodule other lung → T1bN0M1a
- Separate primaries
 - -T1bN0M0 and T1aN0M0

Radiol Clin N Am 2018;56(1)419-435

Shortcomings - T

- Multiple lesions
 - -Separate primary vs. metastasis
 - Open to radiologic interpretation
 - Increased number in TNM8 but no change in survival suggests selective reporting
 - Radiologic reported 1.7% vs. pathologically reported 3.5%
 - Lack of database information precludes assessing impact

66

Shortcomings - T

- Subsolid lesions
 - Slower growth rates
 - Imaging characteristics of most TNM8 lesions not captured
 - May underestimate survival in patients with more indolent lesions

Shortcomings - T

- Subsolid lesions
 - -Slower growth rates
 - Imaging characteristics of most TNM8 lesions not captured
 - May underestimate survival in patients with more indolent lesions

Shortcomings - T

- Lymphangitic carcinomatosis not addressed
 - -T3 if nodular
 - M1a if associated pleural involvement
 - Typically associated with advanced disease but can occur locally with early-stage disease

Shortcomings - N

- Heterogeneity of N2 disease
 - Single N2 station
 - Skip lesions (single N2 but no N1)
- Undefined sites
 - Axillary
 - Internal mammary
 - Lower cervical
 - Upper abdominal

70

Shortcomings - M

- Impact of FDG PET/CT
- Choice of brain imaging
 - -CT vs. MRI
 - -Variable recommendations
- Variability in biopsy and imaging

Shortcomings - M

- Retrospective analysis of 12395 patients with lung cancer
- 1994-1998 (no PET)
- 1999-2004 (PET)
- Stage shift from III-IV with improved survival in both groups

Chee KG et al. Arch Intern Med 2008

Bottom Line

- TNM8 overrepresents surgically resected disease and underrepresents chemotherapy treated cases
- Survival for earlier stage disease increased compared to TNM7
- Survival for advanced stage disease (especially IIIB) worsened

TMN 9

- Expected in 2024
- Robust dataset
- Should better reflect current practices –FDG PET/CT
 - -Brain MRI
 - -Mediastinal staging

74

Summary

- Imaging is central to lung cancer diagnosis
 and staging
- Staging impact on prognosis is likely more important for early-stage disease
- Molecular and biologic profiles become more important for advanced disease

